
# METAL FILM (LONG-TERM PRECISION)



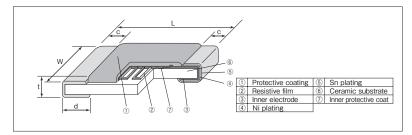
# RN73H Metal Film Flat Chip Resistors (For Automotive, High reliability)



Coating color: Black

### Features

- SMD metal film resistors.
- $\bullet$  High precision type  $\pm 0.05\%$  is also available as standard.
- $\bullet$  High performance T.C.R.  $\pm 5\times 10^{-6}/K$  is also available as standard.
- Low current noise.
- Operating temperature range ~155℃. Rated ambient temperature: 85℃
- $\bullet$  High reliability with  $\Delta R$  of  $\pm 0.1\%$  in the long-term reliability test.
- $\bullet$  Endurance at 85°C (3,000h) :  $\Delta R$  of  $\pm 0.1\%$
- Improved moisture resistance by special protective coating.
- High precision resistor solution for tough environments, especially in high reliable automotive, medical and industrial applications.
- Suitable for both flow and reflow solderings.
- $\bullet$  Products meet EU-RoHS requirements.
- AEC-Q200 qualified.
- Sulfur resistance verified according to ASTM B 809-95.


### Applications

- Automotive electronics (Power Train, Body Control)
- Industrial equipment
- Medical equipment
- Measurement equipment

## ■Reference Standards

IEC 60115-8 JIS C 5201-8 EIAJ RC-2133A

#### ■ Construction



#### Dimensions

| Туре             |              | Weight(g)         |                 |                             |           |           |  |
|------------------|--------------|-------------------|-----------------|-----------------------------|-----------|-----------|--|
| (Inch Size Code) | L            | W                 | С               | d                           | t         | (1000pcs) |  |
| 1E (0402)        | 1.0+0.1      | 0.5±0.05 0.25±0.1 |                 | 0.25+0.05                   | 0.35±0.05 | 0.68      |  |
| 1 J (0603)       | 1.6±0.2      | 0.8±0.1           | 0.3±0.1 0.3±0.1 |                             | 0.45±0.1  | 2.14      |  |
| 2A (0805)        | 2.0±0.2      | 1.25±0.2          | 0.4±0.2         | 0.4±0.2 0.3 <sup>+0.2</sup> |           | 4.54      |  |
| 2B(1206)         | 3.2±0.2      | 1.6±0.2           | 0.5-0.0         | 0.4+0.2                     | 0.6±0.1   | 9.14      |  |
| 2E(1210)         | 3.Z <u>_</u> | 2.5±0.2           | 0.5±0.3         | U.4 <sub>-0.1</sub>         | U.0.EU.1  | 14.5      |  |

#### ■Type Designation

#### Example

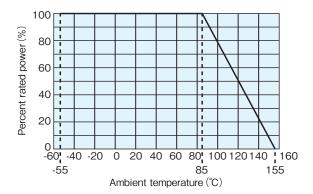
| RN73H   | 2B        | T                | TD           | 1002       | В          | 25                     |
|---------|-----------|------------------|--------------|------------|------------|------------------------|
| Product | Power     | Terminal         | Taping       | Nominal    | Resistance | T.C.R.                 |
| Code    | Rating    | Surface Material |              | Resistance | Tolerance  | (×10 <sup>-6</sup> /K) |
|         | 1E:0.063W | T:Sn             | TP:2mm pitch | 4 digits   | A:±0.05%   | 05                     |
|         | 1J:0.1W   | G:Au*¹           | punch paper  |            | B:±0.1%    | 10                     |
|         | 2A:0.125W |                  | TD:4mm pitch |            | C:±0.25%   | 25                     |
|         | 2B:0.25W  |                  | paper        |            | D:±0.5%    | 50                     |
|         | 2E:0.25W  |                  | TE:4mm pitch |            | F:±1%      | 100                    |
|         |           |                  | plastic      |            |            |                        |
|         |           |                  | embossed     |            |            |                        |
|         |           |                  | BK:Bulk      |            |            |                        |

<sup>\*\*1</sup> Products with gold plated electrodes are also available with 1E and 1J type, so please consult with us.
Contact us when you have control request for environmental hazardous material other than the substance specified by ELI PALS.

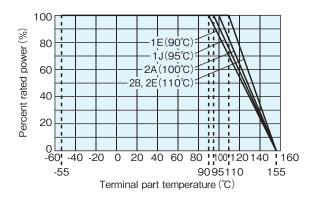
For further information on taping, please refer to APPENDIX C on the back pages.

### Ratings

| Type Power Ambient Terminal |                       |       | T.C.R.<br>(×10 <sup>-6</sup> / |          |          |          |          |          | Max.<br>Working | Max.<br>Overload | Taping & Q'ty/Reel<br>(pcs) |       |       |       |
|-----------------------------|-----------------------|-------|--------------------------------|----------|----------|----------|----------|----------|-----------------|------------------|-----------------------------|-------|-------|-------|
|                             | Rating                | Temp. | Part Temp.                     | K)       | A:±0.05% | B:±0.1%  | C:±0.25% | D:±0.5%  | F:±1%           | Voltage          | Voltage                     | TP    | TD    | TE    |
|                             |                       | ±10   | _                              | 47~100k  | 47~100k  | 47~100k  | 47~100k  |          |                 |                  |                             |       |       |       |
| 1E                          | 1E 0.063W 85℃         | 90°C  | ±25                            | -        | 47~300k  | 47~300k  | 47~300k  | 47~300k  | 50V             | 100V             | 10,000                      | _     | _     |       |
|                             |                       |       | ±50                            | _        | 47~300k  | 47~300k  | 10~300k  | 10~300k  |                 |                  |                             |       |       |       |
|                             |                       |       |                                | ±5       | 100~59k  | 100~59k  | -        | _        | -               |                  |                             |       |       |       |
|                             |                       |       |                                | ±10      | 47~59k   | 47~360k  | 47~360k  | 47~360k  | 47~360k         |                  |                             |       |       |       |
| 1J                          | 0.1W 85℃              | 95℃   | ±25                            | 47~59k   | 15~1M    | 15~1M    | 10~1M    | 10~1M    | 75V             | 150V             | -                           | 5,000 | _     |       |
|                             |                       |       |                                | ±50      | _        | 15~1M    | 15~1M    | 10~1M    | 10~1M           |                  |                             |       |       |       |
|                             |                       |       |                                | ±100     | _        | _        | _        | 10~1M    | 10~1M           |                  |                             |       |       |       |
|                             | <b>2A</b> 0.125W 85°C |       | ±5                             | 100~100k | 100~100k | _        | _        | _        |                 |                  |                             |       |       |       |
|                             |                       |       |                                | ±10      | 47~100k  | 47~1M    | 47~1M    | 47~1M    | 47~1M           |                  |                             |       |       |       |
| 2A                          |                       | 100℃  | ±25                            | 47~100k  | 15~1.5M  | 15~1.5M  | 10~1.5M  | 10~1.5M  | 150V            | 300V             | -                           | 5,000 | 4,000 |       |
|                             |                       |       | ±50                            | -        | 15~1.5M  | 15~1.5M  | 10~1.5M  | 10~1.5M  |                 |                  |                             |       |       |       |
|                             |                       |       |                                | ±100     | _        | _        | _        | 10~1.5M  | 10~1.5M         |                  |                             |       |       |       |
|                             | <b>2B</b> 0.25W 85℃   |       | -                              | ±5       | 100~300k | 100~300k | -        | _        | -               |                  |                             |       |       |       |
|                             |                       |       |                                | ±10      | 47~300k  | 47~1M    | 47~1M    | 47~1M    | 47~1M           |                  |                             |       |       |       |
| 2B                          |                       | 110℃  | ±25                            | 47~300k  | 15~1M    | 15~1M    | 10~1M    | 10~1M    | 200V            | 400V             | _                           | 5,000 | 4,000 |       |
|                             |                       |       | ±50                            | _        | 15~1M    | 15~1M    | 10~1M    | 10~1M    |                 |                  |                             |       |       |       |
|                             |                       |       | ±100                           | _        | -        | -        | 10~1M    | 10~1M    |                 |                  |                             |       |       |       |
|                             |                       |       |                                | ±10      | 100~510k | 100~510k | 100~510k | 100~510k | 100~510k        | 200V             | 200V 400V                   |       | 5,000 | 4,000 |
| 2E                          | 0.25W                 | 85°C  | 110℃                           | ±25      | 51~510k  | 15~1M    | 15~1M    | 10~1M    | 10~1M           |                  |                             |       |       |       |
| 20                          | 0.2500                | 000   |                                | ±50      | -        | 15~1M    | 15~1M    | 10~1M    | 10~1M           |                  |                             | _     |       |       |
|                             |                       |       |                                | +100     | _        | _        | _        | 10~1M    | 10~1M           |                  |                             |       |       |       |


Operating Temperature Range :  $-55\% \sim +155\%$ 

Rated voltage=√Power Rating×Resistance value or Max. working voltage, whichever is lower.


If any questions arise whether to use the "Rated Ambient Temperature" or the "Rated Terminal Part Temperature" in your usage conditions, please give priority to the "Rated Terminal Part Temperature". For more details, please refer to "Introduction of the derating curves based on the terminal part temperature" on the beginning of our catalog.



### ■ Derating Curve



For resistors operated at an ambient temperature of  $85^\circ\!\mathrm{C}$  or higher, the power shall be derated in accordance with the above derating curve.



When the terminal part temperature of the resistor exceeds the rated terminal part temperature shown above, the power shall be derated according to the derating curve. 

\*\*Please refer to "Introduction of the derating curves based on the terminal part temperature" on the beginning of our catalog before use.

## Performance

| Test Items                   | Performance Requirements $\Delta R \pm (\% + 0.05 \Omega)$ |         | Test Methods                                                                                                |  |  |  |
|------------------------------|------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------|--|--|--|
|                              | Limit                                                      | Typical |                                                                                                             |  |  |  |
| Resistance                   | Within specified tolerance                                 | _       | 25°C                                                                                                        |  |  |  |
| T.C.R.                       | Within specified T.C.R.                                    | _       | +25°C/+125°C : T.C.R.=±5(×10 <sup>-6</sup> /K)<br>+25°C/-55°C and +25°C/+155°C : others                     |  |  |  |
| Overload (Short time)        | 0.05                                                       | 0.01    | Rated voltage × 2.5 or Max. overload., whichever is less, for 5s                                            |  |  |  |
| Resistance to soldering heat | 0.05*2                                                     | 0.01    | 260°C±5°C, 10s±1s                                                                                           |  |  |  |
| Rapid change of temperature  | 0.1*2                                                      | 0.02    | 1E, 1J, 2A: -55°C (30min.)/+155°C (30min.) 1000 cycles<br>2B, 2E: -55°C (30min.)/+155°C (30min.) 500 cycles |  |  |  |
| Moisture resistance          | 0.1*2                                                      | 0.05    | 85℃±2℃, 85%±5%RH, 1000h<br>1.5h ON/0.5h OFF cycle                                                           |  |  |  |
| Endurance at 85°C            | 0.1                                                        | 0.03    | 85℃±2℃, 3000h<br>1.5h ON/0.5h OFF cycle                                                                     |  |  |  |
| High temperature exposure    | 0.1*2                                                      | 0.05    | +155°C, 1000h                                                                                               |  |  |  |

※2 Depends on resistance value.

# ■Precautions for Use

- The properly and electrostatically measured taping materials are used for the components, but attention should be paid to the fact that there is some danger the parts absorb on the top tapes to cause a failure in the mounting and the parts are destructed by static electricity (1J, 2A, 2B, 2E: 1kV and more, 1E: 0.5kV and more at Human Body Model 100pF,  $1.5k\Omega$ ) to change the resistance in the conditions of an excessive dryness or after the parts are given vibration for a long time as they are packaged on the tapes. Similarly, care should be given not to apply the excessive static electricity when mounting on the boards.
- Ionic impurities such as flux etc. that are attached to these products or those mounted onto a PCB, negatively affect their moisture resistance, corrosion resistance, etc. The flux may contain ionic substances like chlorine, acid, etc. while perspiration and saliva include ionic impurities like sodium (Na<sup>+</sup>), chlorine (Cl<sup>-</sup>) etc. Therefore these kinds of ionic substances may induce electrical corrosion when they invade into the products. Either thorough washing or using RMA solder and flux are necessary since lead free solder contains ionic substances. Washing process is needed, before putting on moisture proof material in order to prevent electrical corrosion.
- When heat-resistant masking tapes are attached to the chip resistors at the time of mounting and then detached, there is a possibility of exfoliation of the top electrodes. It is known that the heat applied in the mounting process will enhance the adhesion strength of the tape adhesive so please avoid the use. If the use of masking tapes are unavoidable, then please be sure not to attach the tape adhesives directly on the products.

When high-pressure shower cleaning is implemented, there is a possibility of exfoliation of the top electrodes caused by the water pressure stress so please avoid the implementation.

If the implementation is unavoidable, then please evaluate the products beforehand.